)上的焊点,如图1所示。按照一阶近似的简单算法,次要功耗通道的影响(如图所示)在热阻计算中可以忽略不计。
夹片粘合封装在散热上与焊线封装的区别在于,器件结的热量可以沿两条不同的通道耗散出去,即通过引线框架(与焊线封装一样)和夹片框架散热。
结到焊点 Rth( j-sp )的热阻定义因为两个参考焊点的存在而变得更加复杂。这些参考点的温度可能不同,导致热阻成为一个并联网络。
Nexperia(安世半导体)使用相同方法来提取夹片粘合器件和焊线器件的 Rth( j-sp )值。该值表征从芯片到引线框架再到焊点的主要散热通道,使得夹片粘合器件的值与类似 PCB 布局中的焊线器件值(找元器件现货上唯样商城)相似。然而,在提取 Rth( j-sp )值时,并没有充分利用第二条通道,因此器件的总体散热潜力通常更高。
事实上,第二条关键的散热通道让设计人员有机会改进 PCB 设计。例如,对于焊线器件,只能通过一条通道来散热(二极管的大多数热量通过阴极引脚耗散);而对于夹片粘合器件,两个端子均可散热。
仿真实验表明,如果 PCB 上的所有器件端子都有散热通道,可以显著改善热性能。例如,在 CFP5 封装的 PMEG6030ELP 二极管中(图3),35%的热量通过铜夹片传递到阳极引脚,65%的热量通过引线框架传递到阴极引脚。
如果将一个1 cm² 的散热片分成两个0.5 cm² 的散热片,分别放置于两个端子的下方,在相同的温度下,二极管可以耗散的功率会增加6%。
与标准的散热设计或者仅连接在阴极处的6 cm² 散热片相比,两个3 cm² 散热片可以增加约20%的功率耗散。
部分半导体器件制造商不会向设计人员提供必要信息,导致设计人员无法确定哪种封装类型能为其应用提供更好的散热性能。在本文中, Nexperia(安世半导体)介绍了其焊线器件和夹片粘合器件中的散热通道,帮助设计人员为其应用做出更好的决策。
Martin Röver于2010年在哥廷根大学获得半导体物理学博士学位。在哥廷根大学短暂的博士后工作阶段后,他于2011年加入恩智浦(后加入Nexperia),担任双极性晶体管(BJT)的开发工程师。在过去的12年中,他在Nexperia公司积累了垂直BJT的设计和质量方面的经验,作为分立器件(如SMD和DFN封装)的系统架构师,并担任产品开发的项目负责人。此外,他还推动热仿真课题,如RC热模型的生成,并主持Nexperia的热主题专家小组。
目标系统规格以及标准的相应架构、电路和元件呢?这些是由电路满足在效率、带宽和精度方面提供系统所需性能,同时又满足安全隔离
目标系统规格以及标准的相应架构、电路和元件呢? /
较多,但都是很重要的。将研发中心通过集成技术构建的工艺流程移交给批量生产工厂,在硅片上植入
当你想引进自己的协作机器人的时候,都会考虑:哪个机器人最好?怎么挑选最好的协作机器人?这个问题就像我们买车的时候,问的哪个车最好。只能说各有千秋,没有真正的答案,